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Abstract
We investigate some implications of the freezing scenario proposed by
Carpentier and Le Doussal (CLD) for a random energy model (REM)
with logarithmically correlated random potential. We introduce a particular
(circular) variant of the model, and show that the integer moments of the
partition function in the high-temperature phase are given by the well-known
Dyson Coulomb gas integrals. The CLD freezing scenario allows one to use
those moments for extracting the distribution of the free energy in both high-
and low-temperature phases. In particular, it yields the full distribution of the
minimal value in the potential sequence. This provides an explicit new class of
extreme-value statistics for strongly correlated variables, manifestly different
from the standard Gumbel class.

PACS numbers: 05.40.−a, 75.10.Nr

1. Introduction

The random energy model (REM) introduced by Derrida in [1] is characterized by the partition
function Zβ = ∑M

i=1 e−βVi , where β is the inverse temperature, and Vi for i = 1, . . . , M are
random variables with the typical variance

〈
V 2

i

〉 = V 2 = O(log M) for M → ∞. Such a
model, as well as its generalized version (GREM) [2, 3] continues to play a paradigmatic role
in statistical mechanics of disordered systems. Simple enough to allow for a detailed analytical
investigation by various methods, the freezing transition exemplified by REM appears to be
a rather generic phenomenon. It emerges with surprising regularity in a variety of physical
situations, ranging from transparency of random media [4], directed polymers in random
environment [5], p-spin glass models and the glass transition [6], random heteropolymers and
models of protein folding [7] to properties of quantum particles in a random magnetic field
[8, 9], and thermodynamics of a single particle in random Gaussian landscapes [10]. It is also
a rich model from purely probabilistic point of view [11], and has an interesting dynamical
counterpart: aging [12].
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As the low-temperature behaviour in statistical mechanics is obviously controlled by
the lowest available energies, it is not surprising that a detailed description of the freezing
phenomenon is intimately related to the so-called extreme-value statistics of random variables
[13]. For independent, identically distributed variables Vi , the cumulative probability
distribution Pm(x) of Vm = min{V1, . . . , VM} is well understood in mathematical literature
and, provided the support of the distribution extends to −∞ but decays faster than any power-
law, is given in the limit M � 1 by the Gumbel law

Pm(x) = Prob(Vm > x) = exp[−e(x+aM)/bM ], (1)

where the constants aM and bM depend explicitly on the distribution of Vi , but the double-
exponential shape of the Gumbel law is very robust (universal). This universality extends to a
very broad class of correlated variables provided those correlations decay fast enough, see a
detailed description in [14]. For a mathematically rigorous analysis of REM and GREM based,
in particular, on the extreme-value statistics, see [15]; see also [16] for recent developments.

A few years ago Carpentier and Le Doussal (CLD) [9] studied a specific case of correlated
random variables that is arguably the richest, most challenging, and relevant for applications.
More precisely, thinking of the index i as referring to the sites of a certain lattice, the
covariance 〈ViVj 〉 considered by CLD depended on the distance d(i, j) between those sites
logarithmically. An independent support of the fact that logarithmically correlated potentials
should play a special role was obtained recently through a thorough analysis of statistical
mechanics of a single particle in high-dimensional random energy landscapes [10].

To understand the extreme-value statistics in the logarithmic case and to relate it to
a REM-like freezing transition CLD developed a powerful, albeit non-rigorous, real space
renormalization group approach to the distribution P(Z) of the partition function Zβ . In this
way they discovered that logarithmic models represent, in a sense, continuous analogues of
directed polymers on disordered trees, a result somewhat anticipated in [8]. The statistical
mechanics of the directed polymer problem on a tree is known to be amenable to a travelling
wave analysis, see the celebrated paper [5]. Similarly, for the logarithmic case the Laplace
transform of the distribution P(Z) was also shown to satisfy a kind of travelling wave equation
(see also works [17] for a relation between the travelling waves and the extreme-value
statistics, in particular, in the context of the zero temperature directed polymer problem
on a tree). Solutions of equations of that type are known to exhibit a characteristic change
of the shape at some critical front velocity, and following [5] that change was interpreted
by CLD as a signal of a REM-like freezing. In particular, the CLD analysis revealed that
such a transition implies, among other properties, a universal non-Gumbel shape of the far-
left tail for the cumulative distribution of the minimal value of logarithmically correlated
variables: Pm(x → −∞) ≈ 1 − const|x| eax which is clearly different from the Gumbel tail
Pm(x → −∞) ≈ 1 − const eax .

Although CLD’s renormalization group is able to predict successfully the universal far-tail
features of the distribution expected to be shared by all logarithmically correlated potentials,
the calculation of the full distribution for a given potential is beyond the scope of that method.
Indeed, the renormalization procedure needs specifying what the authors called a ‘fusion of
environments’ rule [9]. As CLD convincingly argue, the precise form of that rule is not
important for recovering universal properties. But the actual shape of the travelling wave
equation certainly depends on the particular fusion rule employed. As no guiding principle
for the fusion rule selection had been provided, a more detailed analysis of specific models
appears to be problematic.

The present paper grew out of attempts to overcome the above difficulty. Our main
observation is that for a particular variant of the logarithmically-correlated REM a more
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detailed analysis seems to be possible. In particular, we are able to conjecture the full
distribution function Pm(x) pertinent for the case considered. Namely, after appropriate
rescaling the cumulative distribution Pm(x) of the minimum turns out to be given by the
central result of this work

Pm(x) = 2 e
βcx

2 K1
(
2 e

βcx

2
)
, (2)

where K1(x) stands for the modified Bessel (Macdonald) function, and the parameter βc

is given by the inverse transition temperature in the model. As such, the corresponding
distribution is manifestly different from the standard Gumbel double-exponential form.

Our method draws its inspiration from CLD analysis and is essentially based on the pattern
of the freezing transition revealed in [5, 9]. However, we do not resort to the renormalization
group construction or travelling wave technique, and in this way circumvent the need to know
the microscopic fusion rule. Instead, we demonstrate below that assuming CLD freezing
scenario provides a way to extend the moments of the partition function from the high-
temperature phase to the region below the transition. Roughly speaking, if those moments
can be explicitly calculated above the transition—as is the case for both the standard REM
as well as our variant of the logarithmic model—they can be used to conjecture the shape of
the Laplace transform of the probability density above the transition point. Then the CLD
approach can be used to recover the full distribution of the partition function/free energy
below the transition, yielding in particular the extreme-value statistics.

The structure of the paper is the following. We start with a short general discussion of
CLD freezing scenario, in particular its implications for the moments of the partition function
in the low-temperature phase. As an illustration we show how CLD scenario can be used
in the standard REM case to recover the exact low-temperature expressions for the partition
function moments, obtained long ago by Gardner and Derrida via a rather tedious analysis [3].
After that we introduce and analyse the particular (circular) version of the one-dimensional
logarithmically correlated REM.

2. CLD freezing scenario: general relations and implications

The central object of the subsequent analysis is the Laplace-transform Gβ(p) of the probability
distribution P(Zβ) of the partition function: Gβ(p) = 〈exp{−pZβ}〉. Here and henceforth the
angular brackets stand for the expectation with respect to the distribution of random variables
Vi . Our approach is based on the assumption that such a Laplace transform can be efficiently
found in the high-temperature phase.

Following [5, 9] we introduce the variable x via p = eβx and consider the function
G̃(x) = 〈exp{−eβxZβ}〉. Extending the Derrida–Spohn scenario, CLD postulate that in the
thermodynamic limit M � 1 the latter function has a shape of a travelling wave, that is

G̃(x) = gβ(x + mβ(L)), mβ(L � 1) ≈ c(β)L + l.o.t., L = ln M (3)

where we introduced the parameter L to identify with notations used in [9], and l.o.t. stands
for the lower order terms when L → ∞.3 In general, both the travelling wave profile gβ(y)

and the wave velocity c(β) depend on the inverse temperature β. The REM-like transition
in this approach is described by a ‘freezing’ of both the velocity and the profile function at a
certain transition temperature β = βc so that in the full low-temperature phase β � βc one
has

gβ(y) = gβc
(y), mβ(M � 1) ≈ c(βc)L + l.o.t. (4)

3 Establishing the precise form of those terms, both above and below the transition, was one of the central points of
CLD analysis. It is, however, of no direct relevance for us in the present paper.
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By the very definition of the function G̃(x) we then have the following relation for β � βc:

〈exp{−eβxZβ}〉 = G̃(x)|β�βc
= gβc

(x + c(βc)L) (5)

which fixes the shape of the Laplace transform Gβ�βc
(p) = 〈exp{−pZβ}〉 in the whole

temperature range below the transition point.
Equipped with such a scenario, we will exploit that the knowledge of the Laplace transform

allows one to calculate the moments of the partition function below the transition by employing
the standard identity:〈
Z−ν

β

〉 = 1

�(ν)

∫ ∞

0
dp pν−1〈e−pZβ 〉 = 1

�(ν)

∫ ∞

0
dp pν−1gβc

(
1

β
ln p + c(βc)L

)
, (6)

where �(x) stands for the Euler Gamma function, and we used that x = 1
β

ln p.
According to the freezing scenario, the mean value of the free energy in the low-

temperature phase is to leading order in L � 1 temperature independent, and is given by
〈F 〉 = − 1

β
〈ln Zβ〉 = −c(βc)L. Being interested in the fluctuations of the free energy, we

introduce the random variable f = F − 〈F 〉 whose probability density we denote Pβ(f ).
After changing the integration variable in (6) to y = 1

β
ln p + c(βc)L, introducing s = −βν

and integrating once by parts we observe that (6) takes the following form:

〈e−sf 〉f ≡
∫ ∞

−∞
e−sfPβ(f ) df = − 1

�
(
1 − s

β

) ∫ ∞

−∞
e−sy

[
d

dy
gβc

(y)

]
dy. (7)

Thus, the only function needed for investigating the low-temperature phase is the shape
of the travelling wave profile gβ(y) at the critical point β = βc. For a general nonzero
temperature βc < β < ∞ one can extract the explicit form of the free-energy distribution
Pβ(f ) by noting that the analytical continuation s → is converts the relation (7) to a Fourier
transform which as we shall shortly see can be frequently inverted explicitly. A particular
simple relation is obtained in the zero-temperature limit β → ∞ where the free energy simply
reduces to the minimum value of all random energies in the sample F → Vm = mini{Vi}. It
is immediately clear from (7) that

lim
β→∞

Pβ(f ) = − d

df
gβc

(f ) (8)

yielding a very general relation between the shape of the critical profile gβc
(x) and the

probability density Pm(x) ≡ − d
dx

Pm(x) of the fluctuations of the extreme values in the
sample: Pm(x) = − d

dx
gβc

(x).
Let us briefly demonstrate how this method works for the standard REM with i.i.d.

Gaussian sequence of Vi . Introducing the notation Z(0) = e
(1+ β2

β2
c
) ln M

, the analysis of [9]
demonstrated that everywhere in the high-temperature phase β � βc the Laplace transform is
given by

Gβ<βc
(p) =

∫ ∞

0
e−pZP(Z) dZ ≈ e−pZ(0)

, 0 � pZ(0) � O(ln ln M). (9)

Identifying L = ln M as in (3) we find from (9) and the correspondence G(p)|p=eβx ≡
gβ(x + c(β)L) the REM travelling wave profile which is given by

gβ(y) = exp{−eβy}, c(β) = 1

β
+

β

β2
c

. (10)

In particular, when approaching the transition point β = βc the shape and velocity of the
travelling wave tends to the limiting values

gβc
(y) = exp{−eβcy}, c(βc) = 2

βc

. (11)
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According to the general discussion, the Laplace transform 〈e−pZβ 〉 = Gβ(p) of the probability
distribution of the partition function in the low-temperature phase β > βc can be found from

G̃(x) = gβc
(x + c(βc)L) = exp{−eβcx+2L} ⇒ Gβ>βc

(p) = e−CMp
βc
β

, CM = e2L = M2,

(12)

where we again used the correspondence x = 1
β

ln p. In turn, the last expression can be
immediately employed to recover the (non-integer) moments of the partition function from the
first of relations in (6). Substituting there Gβ>βc

(p) from (12) yields after a straightforward
manipulation

〈
Z−ν

β

〉 = [Za]−ν
�

(
1 + β

βc
ν
)

�(1 + ν)
, Za = e2 β

βc
ln M (13)

valid as long as −ν <
βc

β
. The latter moments are, to leading approximation, precisely those

obtained by Gardner and Derrida [3], and coincide, as expected from general arguments,
with the moments of a totally asymmetric Lévy stable distribution of index βc/β [13, 15,
18]. Finally, the above moments allow one to recover the distribution of the free-energy
fluctuations in the low-temperature phase of the REM, which seems not to be written explicitly
in the literature. Namely, making an analytic continuation ν → is/β, and introducing
f = − 1

β
ln Z/Za we note that (13) takes a form of the Fourier transform of the probability

density for f , see (7). Inverting that transform gives

PREM
β>βc

(f ) = 1

2π

∫ ∞

−∞
e−isf 1

�
(
1 + is

β

)�

(
1 +

is

βc

)
ds = − d

df

∞∑
n=0

(−1)n

n!

enβcf

�
(
1 − n

βc

β

) . (14)

In particular, the zero-temperature limit β → ∞ coincides with the general relation (8)
between Pm and gβc

, as given by equation (11), which immediately yields the famous Gumbel
distribution for the minimal energy. It is also evident that the far-left tail f → −∞ of the
probability density PREM

β (f ) is of the Gumbel form everywhere in the low-temperature phase
β > βc, again expected from general arguments [13, 15, 18].

3. The circular logarithmic REM

3.1. Definition of the model and the moments in the high-temperature phase

Consider the lattice of M points positioned equidistantly at the circumference of a unit circle.
Their angular coordinates are given by θk = 2π

M
k, k = 1, 2, . . . , M . With each point we

associate a Gaussian random variable Vi , with position-independent variance
〈
V 2

i

〉 = V 2 and
covariances chosen to be

Ckl = 〈VkVl〉 = −g2 ln

{
4 sin2 θk − θl

2

}
. (15)

For the consistency of the procedure we have to choose variance V 2 in a way ensuring
positive definiteness of the full covariance matrix with entries V 2δkl + (1 − δkl)Ckl . The
condition amounts to V 2 > −λmax, with λmax being the largest eigenvalue of the matrix Ĉ

with entries Ckl . The matrix Ĉ is by definition a circulant real symmetric, with zero diagonal.
Hence, its eigenvalues are given by λq = ∑M

l=2 C1lω
l−1
q , where ωq = exp

{ 2π iq
M

}
are roots of

Mth degree from unity. The largest eigenvalue corresponds to q = 0, when ωq = 1. Then we
have

λmax = −g2
M−1∑
s=1

ln

{
4 sin2 πs

M

}
= −g2 ln

{
M−1∏
s=1

4 sin2 πs

M

}
.
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Using the identity: M
2M−1 = ∏M−1

s=1 sin πs
M

we see that λmax = −2g2 ln M , so we have to choose
the variance to satisfy V 2 = 2g2 ln M + W , with an arbitrary positive W > 0. In what follows
we assume that W = O(1) when M � 1 and therefore can be safely neglected if we are
interested only in the leading terms in the thermodynamic limit.

We define the partition function for our model in the standard way through Zβ =∑M
i=1 e−βVi , with the goal to evaluate positive integer moments 〈[Zβ]n〉 in the limit M � 1.

The expected value of the partition function is obviously independent of the covariance and
is given by the standard REM expression, 〈Zβ〉 = exp{ln M[1 + β2g2]}, so the first nontrivial
moment is

〈[Zβ]2〉 =
M∑

i1=1

〈exp{−2βVi1}〉 +
M∑

i1 
=i2

〈exp{−β(Vi1 + Vi2)}〉

= eln M(1+4β2g2) + eln M2β2g2
M∑

i1 
=i2

[
2 sin

(
π(i1 − i2)

M

)]−2β2g2

. (16)

Introducing θ̃k = πk/M for k = 1, 2, . . . ,M we see that the second term in (16) is a kind of
Riemann sum, and that in the limit M → ∞ can be approximated as
M∑

i1 
=i2

[
2 sin

(
π(i1 − i2)

M

)]−2β2g2

≈ M2

π

∫ π−π/M

π/M

[2 sin θ̃ ]−2β2g2
dθ̃

≈

⎧⎪⎪⎨
⎪⎪⎩

e2 ln M �(1 − 2β2g2)

�2(1 − β2g2)
, 2β2g2 < 1

eln M(1+2β2g2) 1

π2β2g2
(2β2g2 − 1)22β2g2−1

, 2β2g2 > 1.

(17)

The first line in (17) corresponds to the convergent integral in the limit M → ∞ which can
be easily evaluated by reducing it to the standard Euler’s integral of the first kind , see [22],
p 898. In contrast, the second line is obtained by extracting the leading term of the divergent
integral. Comparing now second ‘off-diagonal’ term in (16) with the first ‘diagonal’ one, we
find that for 2β2g2 > 1 the diagonal and off-diagonal contributions are of the same order,
whereas for 2β2g2 < 1 the off-diagonal contribution dominates. Finally, we arrive at

〈[Zβ]2〉|M�1 ≈

⎧⎪⎪⎨
⎪⎪⎩

e2 ln M(1+β2g2) �(1 − 2β2g2)

�2(1 − β2g2)
, β2g2 < 1/2

eln M(1+4β2g2)

[
1 +

1

π2β2g2
(2β2g2 − 1)22β2g2−1

]
, β2g2 > 1/2.

(18)

The case of a general positive integer moment can be treated along the same lines.
Denoting xi = e−βVi we use(

M∑
i=1

xi

)n

=
n∑

p1=0,...,pM=0

n!

p1! . . . pM !
x

p1
1 . . . x

pM

M δn,
∑M

i=1 pi

=
M∑

i1=1

xn
i1

+
n−1∑
l=1

n!

l!(n − l)!

M−1∑
i1=1

M∑
i2=i1+1

xl
i1
xn−l

i2
+ · · · , (19)

where in the second line we regrouped the terms according to partitions of the integer n into
the sum of nonnegative integers with length k (i.e. the number of nonzero parts) taking values
k = 1, . . . , n. For example, partitions of the length k = 1 are sets {p1, . . . , pM} with all
but one pj equal to zero, and with the remaining nonzero integer taking the value p = n.

6
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The total contribution of those partitions is obviously
∑M

i1=1 xn
i1

which is the first term in (19).
Similarly, the contribution of all partitions of the length k = 2 is precisely the second term
in the above expression, and so on. Finally, we perform the ensemble averaging of the above
sum using the identity

〈
x

l1
i1
x

l2
i2

· · · xlk
ik

〉 = eln Mβ2g2 ∑k
q=1 l2

q

k∏
p<q

[
2 sin

(
π(ip − iq)

M

)]−2β2g2lplq

(20)

valid in the case of all different indices in the set i1, . . . , ik . In the limit M → ∞ we then find
by inspection the dominating terms. After manipulations generalizing those we performed
earlier for n = 2 case we find the following general expression:

〈[Zβ]n〉|M�1 ≈
{

en ln M(1+β2g2)In(β
2g2), n < 1/β2g2

eln M(1+n2β2g2)O(1), n > 1/β2g2
(21)

where

In(β
2g2) = n!

πn

∫ π

0
dθ1

∫ π

θ1

dθ2

∫ π

θ2

dθ3 . . .

∫ π

θn−1

dθn

n∏
p<q

[2 sin(θp − θq))]
−2β2g2

. (22)

The explicit expression for the factor O(1) in the second line of (21) is rather complicated,
but is actually not needed for our purposes. Finally, using the symmetry of the integrand in
(22) and noting that |e2iθp − e2iθq |2 = 4 sin2 (θp − θq) one observes that (22) is a particular
case of the so-called Morris integral (related to the famous Selberg integral) whose value was
first conjectured by Dyson in his studies of the Coulomb gas problem (see a very informative
historic account and further references in [19])

In(β
2g2) = 1

(2π)n

∫ 2π

0
dθ1 . . .

∫ 2π

0
dθn

∏
a<b

|eiθa − eiθb |−2β2g2 = �(1 − nβ2g2)

[�(1 − β2g2)]n
. (23)

The integral is clearly finite provided β2g2 < 1/n � 1, and is divergent otherwise. The
condition βg < 1 defines the high-temperature phase of the model. Note a certain similarity
between our calculations and those arising in the framework of the multifractal random walk
model of Bacry, Muzy and Delour [20].

The crucial point of our analysis is the ability to offer the explicit form of the probability
densityP(Z) of the partition function Zβ = Z > 0 which precisely reproduces the expressions
for the moments (21). It is given by

P(Z) =
{
P<(Z), Z < Z∗
P>(Z), Z > Z∗,

(24)

where we defined Z∗ = e2 ln M and introduced for βg < 1 the two functions:

P<(Z) = 1

Z

1

β2g2

(
Ze

Z

) 1
β2g2

exp −
{(

Ze

Z

) 1
β2g2

}
, Ze = eln M(1+β2g2)

�
(
1 − β2g2

) , (25)

and

P>(Z) = M√
4π ln M

1

βg

1

Z
e
− 1

4 ln Mβ2g2 ln2 Z
f

(
1

2

ln Z

ln M

)
. (26)

To understand the structure of P(Z) note that the growth rate of the moments in the second
line of equation (21) dictates that the far tail of the distribution must be of a log-normal nature.
This is exemplified by the choice (26) for P>(Z). On the other hand, the first line in (21) and
the expressions (23) yield the probability density of the form P<(Z) in equation (25). The

7
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crossover value Z = Z∗ is determined from the requirement for the leading exponential terms
in the two pieces of the probability density to match smoothly, i.e. P<(Z∗) ≈ P>(Z∗) for
M � 1. The factor f (x) in (26) is assumed to be of the order of unity when its argument is
of the order of unity, and is otherwise left unspecified. Finally, we verify in the appendix that
the choice of P(z) in equations (24)–(26) ensures the required change in moments 〈Zn〉M�1

to occur precisely at n = 1/g2β2.
At the next step we use the probability density (24) for evaluating the Laplace transform

function Gβ(p) in the high-temperature phase. A somewhat lengthy but straightforward
calculation reveals that the log-normal tail P>(Z) gives for M � 1 a negligible relative
contribution to the Laplace transform, as long as we keep finite the value pZe < ∞.
Effectively, it means that for our goals we can assume the partition function Zβ to be distributed
with the probability density P<(Zβ) given in equation (25). After a simple transformation of
variables this implies a rather simple asymptotic formula

Gβ(p) = 〈e−pZβ 〉|M�1 ≈
∫ ∞

0
exp(−t − pZet

a) dt, a = β2g2 < 1. (27)

Using such an expression , we can, for example, easily calculate the mean logarithm of the
partition function, hence the mean free energy

〈ln Z〉 = lim
ε→0

[
�(ε) −

∫ ∞

0
dp pε−1〈e−pZβ 〉

]
= ln Ze − a�′(1),

so that the mean free energy is given by

〈F 〉 = − 1

β
〈ln Z〉 = −

(
1

β
+ βg2

)
ln M − 1

β
ln [�(1 − β2g2)] − βg2�′(1), β2g2 < 1

(28)

The leading term yields the expected universal REM expression for the mean free energy valid
in the high-temperature phase, the rest corresponds to system-specific corrections. Those
corrections diverge logarithmically when approaching the critical temperature β = 1/g = βc,
signalling of the phase transition. Note that the same result for the free energy can be recovered
by the standard replica trick using moments (21).

The fluctuations of the free energy around its mean value can be easily recovered as well,
using the explicit form of the distribution P<(Zβ). Namely, introducing

f = F − 〈F 〉 = − 1

β
ln{Z/Ze} + f0, f0 = − a

β
�′(1) (29)

equation (25) implies the following probability density in the high-temperature phase β < βc:

Pβ(f ) = β

a
exp

{
β

a
(f − f0) − e

β

a
(f −f0)

}
. (30)

According to our previous discussion, a central role is played by G̃(x) = Gβ(p = eβx).
Identifying L = ln M we observe that G̃(x) ≡ gβ(x + mL) where mL = 1

β
ln Ze. Using

equation (28) we further see that

mL|L�1 ≈ 1 + a

β
L + O(1) = c(β)L + O(1), c(β) = 1

β
+

β

β2
c

,

again in full agreement with CLD results in the high-temperature phase, with c(β) interpreted
as the travelling wave velocity, and the wavefront profile given by

gβ(y) =
∫ ∞

0
dt exp

{
−t − eβy

ta

}
, a = β2g2 < 1. (31)

8
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3.2. Transition to the low-temperature phase in the circular logarithmic REM

To investigate the low-temperature phase for β � βc we rely upon the CLD freezing scenario.
When approaching the transition point a = β2

/
β2

c = 1 the profile (31) tends to a well-defined
limit

gβc
(y) = 2 e

βcy

2 K1
(
2 e

βcy

2
)
, (32)

where K1(x) is the modified Bessel (Macdonald) function. According to the freezing
arguments this shape via relation (8) is translated into the extreme-value probability density
(2), which is our central result. This expression is non-Gumbel as the cumulative distribution
behaves for x → −∞ as P CLM

m (x) ≈ 1+βcx e
βcx

2 in full agreement with the analysis of [9]. The

opposite tail for x → ∞ has a generalized Gumbel-like shape P CLM
m (x) ∝ exp

{
βcx

4 − 2 e
βcx

2
}
.

Note a certain similarity of these two asymptotes to those of the probability density for the
magnetization in the low-temperature phase of the XY model [21].

Moreover, for all temperatures below the transition β � βc the value of the leading term
in mL and the shape of the wavefront profile should be frozen to the critical point values,
i.e. those for β = βc. Thus, to the leading order mL(β > βc) = c(βc)L ≡ m∗

L,4 whereas
the profile gβ(y) is given by equation (32) for any β > βc. In the same way as in the REM
case this fact allows one to extract the moments of the partition function everywhere in the
low-temperature phase when G̃(x) = gβc

(x + m∗
L). Employing now the critical profile shape

equation (32) and substituting x = 1
β

ln p we recover the Laplace transform Gβ(p) of the
probability density of the partition function below the transition∫ ∞

0
dZβPβ>βc

(Zβ) e−pZβ = Gβ>βc
(p) = 2bp

γ

2 K1(2bp
γ

2 ), b = e
βc
2 m∗

L; γ = βc

β
� 1.

(33)

This gives us the possibility of calculating negative moments of the partition function as

〈Z−ν〉 = 1

�(ν)

∫ ∞

0
dp pν−1Gβ>βc

(p) = b
− 2

γ
ν

γ �(ν)
�

(
1 +

ν

γ

)
�

(
ν

γ

)
, ν > 0 (34)

where we have used the identity [22]∫ ∞

0
pµKν(ap) dp = 2µ−1a−µ−1�

(
1 + µ + ν

2

)
�

(
1 + µ − ν

2

)
. (35)

Substituting here the explicit values of γ and b, and changing ν → −ν we finally get

〈Zν〉 = eβνm∗
L

1

�(1 − ν)
�2

(
1 − β

βc

ν

)
. (36)

Although we used ν < 0 in the course of derivation, a slight modification of the above
procedure, see [3], shows that the above expression is valid in a wider region, as long as
ν < βc/β < 1.

The mean value of the free energy F in the low-temperature phase is found in a similar way
and the leading order term is simply 〈F 〉 = −β−1〈ln Z〉 = −m∗

L. Introducing the probability
density Pβ(f ) of f = F + m∗

L we can now rewrite equation (36) as∫ ∞

−∞
esfPβ(f ) df = 1

�
(
1 + s

β

)�2

(
1 +

s

βc

)
, Re s > −β. (37)

4 As O(1) terms in mL above the transition diverge logarithmically when β → βc it is natural to expect that at
the transition point they should be replaced with const ln L. Actually, the analysis of [9] predicts the precise value
const = 1/2 at the transition point. Unfortunately, the verification of this interesting prediction goes beyond the
precision of our analysis.

9
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In particular, similarly to the REM case after an analytic continuation s → is the
probability density of the free energy for the circular logarithmic model (CLM) can be extracted
for any β > βc by inverting the corresponding Fourier transform. The corresponding formula
takes a form of an infinite series

PCLM
β>βc

(f ) = 1

2π

∫ ∞

−∞
e−isf 1

�
(
1 + is

β

)�2

(
1 +

is

βc

)
ds (38)

= − d

df

[
1 +

∞∑
n=1

enβcf

n!(n − 1)!�
(
1 − n

βc

β

) (
βcf +

1

n
− 2ψ(n + 1) +

βc

β
ψ

(
1 − n

βc

β

))]

(39)

where ψ(x) = �′(x)/�(x). Exploiting the series expansion for the Macdonald function, see,
e.g. p 909 of [22], it is easy to check that in the zero temperature limit β → ∞ the free-energy
distribution indeed reduces to the extreme-value probability density of form equation (2) in
full agreement with the general relation (8). Equation (39) shows that the same non-Gumbel
behaviour holds for the far-left tail f → −∞ of the free-energy distribution at any temperature
below the transition.

3.3. Conclusion, discussions and open problems

In the present paper, we attempted to investigate some implications of the CLD freezing
scenario [9] for a particular type of REM-like model with logarithmically correlated random
potential on a circle. The chosen model seems to be especially attractive due to relatively
simple expressions for the integer moments of the partition function in the high-temperature
phase, given by the well-known Dyson Coulomb gas integral. We argue that in such a case
the Laplace transform of the probability density of the partition function can be efficiently
recovered. When combined with the freezing scenario this knowledge allows us to continue
the Laplace transform to the low-temperature phase. We first check that the method indeed
works for the standard REM example by recovering the well-known, yet nontrivial Gardner–
Derrida formulae [3] for the moments of the partition function below the freezing point. The
same method is then applied to the logarithmic model in question. In particular, we are able
to recover the full distribution of the lowest minimum in the potential, equation (2), and this
extreme-value statistics is manifestly non-Gumbel.

Although we think our results are supported by rather convincing arguments, the
calculations are very essentially based on a few plausible but not yet fully verified assumptions.
As such, mathematically our conclusions have the status of well-grounded conjectures. It
would be certainly very desirable to find alternative ways of investigating the model, as well as
to perform accurate numerical verification of the precise form of the extreme-value statistics.
Another open problem is the universality of our result, equation (2), for logarithmically
correlated random variables, in particular the shape of the right tail (see [17]). We hope our
results provide enough incentive for further research in this direction.

Finally, it might be useful to provide an alternative view on our choice of the
logarithmically correlated potential, equation (15). By employing the known identity:
− ln

(
4 sin2 x1−x2

2

) = 2
∑∞

l=1
1
l

cos l(x1 − x2) we see that the covariance function (15)
represents, in fact, a 2π -periodic real-valued Gaussian random process V (x) = ∑∞

l=1(vl eilx +
v̄l e−ilx) with a self-similar spectrum 〈vlv̄m〉 = g2l−(2H+1)δlm characterized by the particular
choice of the Hurst exponent H = 0. Such a process therefore represents a version of the
so-called 1/f noise. To this end it is worth mentioning that the extreme-value statistics of the

10
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‘roughness’ associated with 1/f noise was investigated in [23], and found to be of Gumbel
form.
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Appendix

The positive integer moments of the distribution P(Z), see Equations (24)–(26), are given in
the high-temperature phase βg < 1 by the sum of two terms

〈Zn〉 = m(n)
< + m(n)

> . (A.1)

The first contribution corresponding to equation (25) is given by

m(n)
< =

∫ Z∗

0
P<(Z)Zn dZ = Zn

e

∫ ∞

B

τ−β2g2n e−τ dτ, B =
(

Ze

Z∗

) 1
β2g2

. (A.2)

In the limit ln M → ∞ we have from (24) and (25) B ∝ e
− 1

β2g2 (1−β2g2) ln M → 0 in view of
β2g2 < 1. After a simple calculation we find

m(n)
< =

⎧⎪⎪⎨
⎪⎪⎩

Zn
e �(1 − nβ2g2), n <

1

β2g2

1

β2g2n − 1
Z

1
β2g2

e Z
n− 1

β2g2

∗ , n >
1

β2g2
.

(A.3)

As to the second contribution, a saddle-point analysis justified by ln M � 1 shows that:

m(n)
> =

∫ ∞

Z∗
en ln ZP>(Z) dZ ≈

⎧⎪⎪⎨
⎪⎪⎩

f (1)

2
√

π ln M(1 − nβ2g2)
e
(1+2n− 1

β2g2 ) ln M
, n <

1

β2g2

f (nβ2g2) eln M(1+β2g2n2), n >
1

β2g2
,

(A.4)

Comparing the two contributions m(n)
> and m(n)

< within the high-temperature phase βg < 1
we see that

(1) m(n)
< � m(n)

> as long as 1 < n < 1
β2g2 . Indeed

n(1 + β2g2) −
(

1 + 2n − 1

β2g2

)
= (1 − β2g2)

(
1

β2g2
− n

)
> 0

which implies

m(n)
< ∼ Zn

e ∼ en(1+β2g2) ln M � e
(1+2n− 1

β2g2 ) ln M ∼ m(n)
> .

(2) If n > 1
β2g2 we have m(n)

< � m(n)
> , as in this case

m(n)
< ∼ Z

1
β2g2

e Z
n− 1

β2g2

< ∼ e
(1+2n− 1

β2g2 ) ln M � m(n)
> ∼ e(1+β2g2n2) ln M,

which follows from

(1 + β2g2n2) −
(

1 + 2n − 1

β2g2

)
=

(
βgn − 1

βg

)2

> 0.
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Accounting for equation (23) and the definition of Ze in equation (25) we indeed see
that the moments 〈Zn〉 coincide for ln M � 1 with the expressions for the partition function
moments (21).
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